skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bünz, Benedikt"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 4, 2026
  2. We study the design of core-selecting payment rules for combinatorial auctions, a challenging setting where no strategyproof rules exist. We show that the rule most commonly used in practice, the Quadratic rule, can be improved on in terms of efficiency, incentives, and revenue. We present a new computational search framework for finding good mechanisms, and we apply it toward a search for good core-selecting rules. Within our framework, we use an algorithmic Bayes–Nash equilibrium solver to evaluate 366 rules across 31 settings to identify rules that outperform the Quadratic rule. Our main finding is that our best-performing rules are large-style rules—that is, they provide bidders with large values with better incentives than does the Quadratic rule. Finally, we identify two particularly well-performing rules and suggest that they may be considered for practical implementation in place of the Quadratic rule. 
    more » « less
  3. null (Ed.)
    We present a new algorithm for computing pure-strategy ε-Bayes-Nash equilibria (ε-BNEs) in combinatorial auctions. The main innovation of our algorithm is to separate the algorithm’s search phase (for finding the ε-BNE) from the verification phase (for computing the ε). Using this approach, we obtain an algorithm that is both very fast and provides theoretical guarantees on the ε it finds. Our main contribution is a verification method which, surprisingly, allows us to upper bound the ε across the whole continuous value space without making assumptions about the mechanism. Using our algorithm, we can now compute ε-BNEs in multi-minded domains that are significantly more complex than what was previously possible to solve. We release our code under an open-source license to enable researchers to perform algorithmic analyses of auctions, to enable bidders to analyze different strategies, and many other applications. 
    more » « less